Oral Supplementation with Z-Isomer-Rich Astaxanthin Inhibits Ultraviolet Light-Induced Skin Damage in Guinea Pigs

Author:

Honda MasakiORCID,Kageyama HakutoORCID,Zhang Yelin,Hibino Takashi,Goto MotonobuORCID

Abstract

The effect of oral supplementation with astaxanthin of different Z-isomer ratios on ultraviolet (UV) light-induced skin damage in guinea pigs was investigated. Astaxanthin with a high Z-isomer content was prepared from the all-E-isomer via thermal isomerization. Intact (all-E)-astaxanthin and the prepared Z-isomer-rich astaxanthin were suspended in soybean oil and fed to guinea pigs for three weeks. The UV-light irradiation was applied to the dorsal skin on the seventh day after the start of the test diet supplementation, and skin parameters, such as elasticity, transepidermal water loss (TEWL), and pigmentation (melanin and erythema values), were evaluated. The accumulation of astaxanthin in the dorsal skin was almost the same after consumption of the all-E-isomer-rich astaxanthin diet (E-AST-D; total Z-isomer ratio = 3.2%) and the Z-isomer-rich astaxanthin diet (Z-AST-D; total Z-isomer ratio = 84.4%); however, the total Z-isomer ratio of astaxanthin in the skin was higher in the case of the Z-AST-D supplementation. Both diets inhibited UV light-induced skin-damaging effects, such as the reduction in elasticity and the increase in TEWL level. Between E-AST-D and Z-AST-D, Z-AST-D showed better skin-protective ability against UV-light exposure than E-AST-D, which might be because of the greater UV-light-shielding ability of astaxanthin Z-isomers than the all-E-isomer. Furthermore, supplementation with Z-AST-D resulted in a greater reduction in skin pigmentation caused by astaxanthin accumulation compared to that of E-AST-D. This study indicates that dietary astaxanthin accumulates in the skin and appears to prevent UV light-induced skin damage, and the Z-isomers are more potent oral sunscreen agents than the all-E-isomer.

Funder

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3