Tuning Logical Phi-Bit State Vectors in an Externally Driven Nonlinear Array of Acoustic Waveguides via Drivers’ Phase

Author:

Deymier Pierre A.1,Runge Keith1,Hasan M. Arif2ORCID,Lata Trevor D.1,Levine Josh A.3

Affiliation:

1. Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721, USA

2. Department of Mechanical Engineering, Wayne State University, Detroit, MI 48202, USA

3. Department of Computer Science, The University of Arizona, Tucson, AZ 85721, USA

Abstract

We experimentally navigate the Hilbert space of two logical phi-bits supported by an externally driven nonlinear array of coupled acoustic waveguides by parametrically changing the relative phase of the drivers. We observe sharp phase jumps of approximately 180° in the individual phi-bit states as a result of the phase tuning of the drivers. The occurrence of these sharp phase jumps varies from phi-bit to phi-bit. All phi-bit phases also possess a common background dependency on the drivers’ phase. Within the context of multiple time scale perturbation theory, we develop a simple model of the nonlinear array of externally driven coupled acoustic waveguides to shed light on the possible mechanisms for the experimentally observed behavior of the logical phi-bit phase. Finally, we illustrate the ability to experimentally initialize the state of single- and multiple- phi-bit systems by exploiting the drivers’ phase as a tuning parameter. We also show that the nonlinear correlation between phi-bits enables parallelism in the manipulation of two- and multi-phi-bit superpositions of states.

Funder

NSF

W.M. Keck Foundation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),Astronomy and Astrophysics,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

Reference12 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3