Simultaneous Quantitative Detection of HCN and C2H2 in Combustion Environment Using TDLAS

Author:

Weng WubinORCID,Aldén Marcus,Li ZhongshanORCID

Abstract

Emission of nitrogen oxides (NOx) and soot particles during the combustion of biomass fuels and municipal solid waste is a major environmental issue. Hydrogen cyanide (HCN) and acetylene (C2H2) are important precursors of NOx and soot particles, respectively. In the current work, infrared tunable diode laser absorption spectroscopy (IR-TDLAS), as a non-intrusive in situ technique, was applied to quantitatively measure HCN and C2H2 in a combustion environment. The P(11e) line of the first overtone vibrational band v1 of HCN at 6484.78 cm−1 and the P(27e) line of the v1 + v3 combination band of C2H2 at 6484.03 cm−1 were selected. However, the infrared absorption of the ubiquitous water vapor in the combustion environment brings great uncertainty to the measurement. To obtain accurate temperature-dependent water spectra between 6483.8 and 6485.8 cm−1, a homogenous hot gas environment with controllable temperatures varying from 1100 to 1950 K provided by a laminar flame was employed to perform systematic IR-TDLAS measurements. By fitting the obtained water spectra, water interference to the HCN and C2H2 measurement was sufficiently mitigated and the concentrations of HCN and C2H2 were obtained. The technique was applied to simultaneously measure the temporally resolved release of HCN and C2H2 over burning nylon 66 strips in a hot oxidizing environment of 1790 K.

Funder

Swedish Energy Agency

Knut & Alice Wallenberg Foundation

European Research Council

Swedish Research Council

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3