Counter a Drone in a Complex Neighborhood Area by Deep Reinforcement Learning

Author:

Çetin EnderORCID,Barrado CristinaORCID,Pastor EnricORCID

Abstract

Counter-drone technology by using artificial intelligence (AI) is an emerging technology and it is rapidly developing. Considering the recent advances in AI, counter-drone systems with AI can be very accurate and efficient to fight against drones. The time required to engage with the target can be less than other methods based on human intervention, such as bringing down a malicious drone by a machine-gun. Also, AI can identify and classify the target with a high precision in order to prevent a false interdiction with the targeted object. We believe that counter-drone technology with AI will bring important advantages to the threats coming from some drones and will help the skies to become safer and more secure. In this study, a deep reinforcement learning (DRL) architecture is proposed to counter a drone with another drone, the learning drone, which will autonomously avoid all kind of obstacles inside a suburban neighborhood environment. The environment in a simulator that has stationary obstacles such as trees, cables, parked cars, and houses. In addition, another non-malicious third drone, acting as moving obstacle inside the environment was also included. In this way, the learning drone is trained to detect stationary and moving obstacles, and to counter and catch the target drone without crashing with any other obstacle inside the neighborhood. The learning drone has a front camera and it can capture continuously depth images. Every depth image is part of the state used in DRL architecture. There are also scalar state parameters such as velocities, distances to the target, distances to some defined geofences and track, and elevation angles. The state image and scalars are processed by a neural network that joints the two state parts into a unique flow. Moreover, transfer learning is tested by using the weights of the first full-trained model. With transfer learning, one of the best jump-starts achieved higher mean rewards (close to 35 more) at the beginning of training. Transfer learning also shows that the number of crashes during training can be reduced, with a total number of crashed episodes reduced by 65%, when all ground obstacles are included.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. European ATM Master Plan: Roadmap for the Safe Integration of Drones into All Classes of Airspacehttps://www.sesarju.eu/node/2993

2. A Distributed Approach for Collision Avoidance between Multirotor UAVs Following Planned Missions

3. Flights Diverted after Gatwick Airporthttps://www.bbc.com/news/uk-england-sussex-48086013

4. Countering UAVs – the Mover of Research in Military Technology

5. Counter-Drone Systems; Center for the Study of the Drone at Bard Collegehttps://dronecenter.bard.edu/counter-drone-systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3