Abstract
The need to reduce energy consumption in buildings is an urgent task. Increasing the use of calibrated building energy models (BEM) could accelerate this need. The calibration process of these models is a highly under-determined problem that normally yields multiple solutions. Among the uncertainties of calibration, the weather file has a primary position. The objective of this paper is to provide a methodology for selecting the optimal weather file when an on-site weather station with local sensors is available and what is the alternative option when it is not and a mathematically evaluation has to be done with sensors from nearby stations (third-party providers). We provide a quality assessment of models based on the Coefficient of Variation of the Root Mean Square Error (CV(RMSE)) and the Square Pearson Correlation Coefficient (R2). The research was developed on a control experiment conducted by Annex 58 and a previous calibration study. This is based on the results obtained with the study case based on the data provided by their N2 house.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献