A Fractional High-Gain Nonlinear Observer Design—Application for Rivers Environmental Monitoring Model

Author:

Rodriguez-Mata Abraham EfraimORCID,Bustos-Terrones YanethORCID,Gonzalez-Huitrón VictorORCID,Lopéz-Peréz Pablo Antonio,Hernández-González Omar,Amabilis-Sosa Leonel ErnestoORCID

Abstract

The deterioration of current environmental water sources has led to the need to find ways to monitor water quality conditions. In this paper, we propose the use of Streeter–Phelps contaminant distribution models and state estimation techniques (observer) to be able to estimate variables that are very difficult to measure in rivers with online sensors, such as Biochemical Oxygen Demand (BOD). We propose the design of a novel Fractional Order High Gain Observer (FOHO) and consider the use of Lyapunov convergence functions to demonstrate stability, as it is compared to classical extended Luenberger Observer published in the literature, to study the convergence in BOD estimation in rivers. The proposed methodology was used to estimated Dissolved oxygen (DO) and BOD monitoring of River Culiacan, Sinaloa, Mexico. The use of fractional order in high-gain observers has a very effective effect on BOD estimation performance, as shown by our numerical studies. The theoretical results have shown that robust observer design can help solve problems in estimating complex variables.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3