Shape Mapping Detection of Electric Vehicle Alloy Defects Based on Pulsed Eddy Current Rectangular Sensors

Author:

Zhang KaiORCID,Dong Zhurong,Yu Zhan,He Yunze

Abstract

In this paper, we investigate pulsed eddy current (PEC) testing based on a rectangular sensor for the purpose of defect shape mapping in electric vehicle lightweight alloy material. Different dimensional defects were machined on the 3003 aluminum alloy and detected using the A-scan technique and C-scan imaging in two scanning directions. The experiment results indicated that defect plane shape could be preliminarily obtained and length and width could be estimated based upon C-scan contour images. Consequently, the comparison of results between the two directions showed that the C-scan identification in the direction of magnetic flux was better than in the direction of the exciting current. Finally, subsurface defects and irregular defects were detected to verify the performance of shape mapping as a recommended approach. The conclusion drawn indicates that the proposed method, based on PEC rectangular sensors, is an effective approach in reconstructing a defect’s shape.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference49 articles.

1. Pulsed Eddy Current Technology: Characterizing Material Loss with Gap and Lift-off Variations

2. Defect classification using a new feature for pulsed eddy current sensors

3. Research of pulsed eddy current testing for defect imaging based on gradient magnetic field measurement;Yong;J. Air Force Eng. Univ.,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Imaging and quantitative detection of complex defects with a flexible electromagnetic array sensor;Insight - Non-Destructive Testing and Condition Monitoring;2022-04-01

2. A novel rectangular vertical probe with a conductive shell for eddy current testing;International Journal of Applied Electromagnetics and Mechanics;2020-01-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3