Effect of Recycled Aggregate Quality on the Bond Behavior and Shear Strength of RC Members

Author:

Yanweerasak Thanapol,Kea Theang,Ishibashi Hiroki,Akiyama MitsuyoshiORCID

Abstract

During the aggregate crushing process, natural aggregate and clinging mortar from existing concrete will inevitably produce small cracks and weak bonds between the aggregate and the existing cement mortar. The weaknesses of the existing cement mortar, adhered to a natural aggregate, negatively affect the properties of a recycled aggregate concrete, which prevents its application in reinforced concrete (RC) structures. Recycled aggregate can be classified into several categories, according to its physical and mechanical properties. The properties of concrete incorporated with the recycled aggregate of various qualities can be controlled, and the variability in its strength can also be reduced. This study aims to promote the application of recycled aggregate by investigating the effects of recycled aggregate quality (i.e., water absorption and the number of fine particles) classified by the Japanese Industrial Standards (JIS) on material properties, mechanical properties, and shear behavior of RC beams with recycled aggregate.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Longitudinally reinforced recycled aggregate beams without transverse steel: a review;Discover Civil Engineering;2024-07-30

2. Role of coarse recycled aggregate in concrete beams;Next Materials;2024-07

3. Impact Resistance of Treated Recycled Aggregate Concrete: Drop Weight Test;IOP Conference Series: Earth and Environmental Science;2024-06-01

4. Shear friction and fracture based model for reinforced concrete beams with recycled materials;Alexandria Engineering Journal;2023-07

5. Recycled Concrete Aggregate Classification Based on Quality Parameters and Performance;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2023-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3