Vibration-Based Recognition of Wheel–Terrain Interaction for Terramechanics Model Selection and Terrain Parameter Identification for Lugged-Wheel Planetary Rovers

Author:

Lv Fengtian1234ORCID,Li Nan1,Gao Haibo1,Ding Liang1,Deng Zongquan1,Yu Haitao1ORCID,Liu Zhen1

Affiliation:

1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China

2. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

3. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China

4. Key Laboratory of Marine Robotics, Liaoning Province, Shenyang 110169, China

Abstract

Identifying terrain parameters is important for high-fidelity simulation and high-performance control of planetary rovers. The wheel–terrain interaction classes (WTICs) are usually different for rovers traversing various types of terrain. Every terramechanics model corresponds to its wheel–terrain interaction class (WTIC). Therefore, for terrain parameter identification of the terramechanics model when rovers traverse various terrains, terramechanics model switching corresponding to the WTIC needs to be solved. This paper proposes a speed-independent vibration-based method for WTIC recognition to switch the terramechanics model and then identify its terrain parameters. In order to switch terramechanics models, wheel–terrain interactions are divided into three classes. Three vibration models of wheels under three WTICs have been built and analyzed. Vibration features in the models are extracted and non-dimensionalized to be independent of wheel speed. A vibration-feature-based recognition method of the WTIC is proposed. Then, the terrain parameters of the terramechanics model corresponding to the recognized WTIC are identified. Experiment results obtained using a Planetary Rover Prototype show that the identification method of terrain parameters is effective for rovers traversing various terrains. The relative errors of estimated wheel–terrain interaction force with identified terrain parameters are less than 16%, 12%, and 9% for rovers traversing hard, gravel, and sandy terrain, respectively.

Funder

National Natural Science Foundation of China

Foundation for Innovative Research Groups of the Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

111 Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3