Morphological and Genetic Variability in Radix auricularia (Mollusca: Gastropoda: Lymnaeidae) of Lake Baikal, Siberia: The Story of an Unfinished Invasion into the Ancient Deepest Lake

Author:

Schniebs Katrin,Sitnikova Tatiana Ya.ORCID,Vinarski Maxim V.ORCID,Müller Anke,Khanaev Igor V.ORCID,Hundsdoerfer Anna K.ORCID

Abstract

This article aims to reconstruct the invasion of the ear-shaped pond snail, Radix auricularia (Linnaeus, 1758), to Lake Baikal, East Siberia. This species is widely distributed in the Palaearctic and Northern America, and since the early 20th century has formed abundant and sustained populations in Lake Baikal. The data provided on the morphological and genetic variability of R. auricularia help to better describe and delineate the species. With an integrative approach involving morphological and molecular data, we improved the knowledge of the intraspecific variability of R. auricularia in the most important characteristics used for its determination. Molecular sequences of nuclear spacer fragment ITS-2 and mitochondrial gene fragment cyt–b were obtained from 32 individuals of Radix (including seven outgroup Radix species) collected from various parts of Lake Baikal and adjacent waterbodies and compared with sequences of 32 individuals of R. auricularia from different regions of the Palaearctic as well as with individuals determinated as R. intercisa from Lake Baikal, R. iturupica from the Kurile Islands, R. ussuriensis from the Khabarovsk region, R. narzykulovi from Tajikistan, and R. schubinae from the Amur region. Molecular genetic analyses revealed that all specimens collected from Lake Baikal belong to R. auricularia. There are no genetically distinct groups of snails that would correspond to two morphospecies previously recorded in Lake Baikal (e.g., R. auricularia s. str. and R. intercisa). Variability of the characteristics that are commonly used for species identification (shell morphology, mantle pigmentation, shape and position of the bursa copulatrix, length and position of the bursa duct, length ratio of preputium to penial sheath) were found in individuals analysed with molecular genetics to be broader than recognised in the current literature. Some shells of R. auricularia collected from Lake Baikal resemble shells of another lymnaeid species, R. balthica, and without molecular assessment can be confused with the latter. Geometric morphometric analysis of more than 250 shells revealed no observed hiatus between Baikalian and non-Baikalian R. auricularia. The probable stages and pathways of R. auricularia invasion to Lake Baikal’s ecosystem are outlined and discussed. Factors such as global climate warming and human activity stimulated and facilitated the ongoing dispersal of ear pond snails within Lake Baikal.

Funder

Russian Fund for Basic Research

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference110 articles.

1. Lake Baikal and Its Life;Kozhov,1963

2. Lake Baikal;Martin;Arch. Für Hydrobiol.,1995

3. Lake Baikal: Evolution and Biodiversity,1998

4. Molecular phylogenetic studies on the origin of biodiversity in Lake Baikal

5. Freshwater Aquatic Biomes;Roth,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3