Author:
Nguyen Dat Tien,Pham Tuyen Danh,Batchuluun Ganbayar,Noh Kyoung Jun,Park Kang Ryoung
Abstract
Although face-based biometric recognition systems have been widely used in many applications, this type of recognition method is still vulnerable to presentation attacks, which use fake samples to deceive the recognition system. To overcome this problem, presentation attack detection (PAD) methods for face recognition systems (face-PAD), which aim to classify real and presentation attack face images before performing a recognition task, have been developed. However, the performance of PAD systems is limited and biased due to the lack of presentation attack images for training PAD systems. In this paper, we propose a method for artificially generating presentation attack face images by learning the characteristics of real and presentation attack images using a few captured images. As a result, our proposed method helps save time in collecting presentation attack samples for training PAD systems and possibly enhance the performance of PAD systems. Our study is the first attempt to generate PA face images for PAD system based on CycleGAN network, a deep-learning-based framework for image generation. In addition, we propose a new measurement method to evaluate the quality of generated PA images based on a face-PAD system. Through experiments with two public datasets (CASIA and Replay-mobile), we show that the generated face images can capture the characteristics of presentation attack images, making them usable as captured presentation attack samples for PAD system training.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献