Modeling Time Requirements of CPS in Wireless Networks

Author:

Huegel Richa César,M. de Lucena MateusORCID,Passig Horstmann Leonardo,Conradi Hoffmann José Luis,Fröhlich Antônio AugustoORCID

Abstract

In this paper, we present an approach to assess the schedulability and scalability of Cyber-Physical Systems (CPS) Networks through an algorithm that is capable of estimating the load of the network as its utility grows. Our approach evaluates both the network load and the laxity of messages, considering its current topology and real-time constraints while abstracting environmental specificities. The proposed algorithm also accounts for the network unreliability by applying a margin-of-safety parameter. This approach enables higher utilities as it evaluates the load of the network considering a margin-of-safety that encapsulates phenomena such as collisions and interference, instead of performing a worst-case analysis. Furthermore, we present an evaluation of the proposed algorithm over three representative scenarios showing that the algorithm was able to successfully assess the network capacity as it reaches a higher use.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transparent integration of autonomous vehicles simulation tools with a data-centric middleware;Design Automation for Embedded Systems;2024-01-06

2. SmartData Safety: Online Safety Models for Data-Driven Cyber-Physical Systems;IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society;2022-10-17

3. Exploring Audit Data Retrieval Regimens in the Gateway Integrity Checking Protocol;2022 IEEE 18th International Conference on Factory Communication Systems (WFCS);2022-04-27

4. Security and Effectiveness Analysis of the Gateway Integrity Checking Protocol;IEEE Transactions on Dependable and Secure Computing;2021

5. Deep Learning Adoption Blockchain Secure Framework for Cyber Physical System;Lecture Notes in Electrical Engineering;2020-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3