High-Precision SLAM Based on the Tight Coupling of Dual Lidar Inertial Odometry for Multi-Scene Applications

Author:

Xiao KuiORCID,Yu Wentao,Liu Weirong,Qu Feng,Ma Zhenyan

Abstract

Simultaneous Localization and Mapping (SLAM) is an essential feature in many applications of mobile vehicles. To solve the problem of poor positioning accuracy, single use of mapping scene, and unclear structural characteristics in indoor and outdoor SLAM, a new framework of tight coupling of dual lidar inertial odometry is proposed in this paper. Firstly, through external calibration and an adaptive timestamp synchronization algorithm, the horizontal and vertical lidar data are fused, which compensates for the narrow vertical field of view (FOV) of the lidar and makes the characteristics of vertical direction more complete in the mapping process. Secondly, the dual lidar data is tightly coupled with an Inertial Measurement Unit (IMU) to eliminate the motion distortion of the dual lidar odometry. Then, the value of the lidar odometry after correcting distortion and the pre-integrated value of IMU are used as constraints to establish a non-linear least-squares objective function. Joint optimization is then performed to obtain the best value of the IMU state values, which will be used to predict the state of IMU at the next time step. Finally, experimental results are presented to verify the effectiveness of the proposed method.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3