A Numerical Simulation of Radiation Chemistry for Controlling the Oxidising Environment in Water-Cooled Nuclear Power Reactors

Author:

Swiatla-Wojcik DorotaORCID

Abstract

Maintaining the integrity of materials of light-water nuclear power reactors requires the development of effective methods to control and minimise the corrosive environment associated with the radiolysis of a coolant. In this study, the behaviour of the oxidising environment is simulated using a hybrid method. The hybrid method has advantages in that the production of radiolytic species under exposure of the coolant to ionising radiation is simulated while providing material and charge balances. Steady-state concentrations of stable and transient oxidising agents are calculated as a function of radiation composition and dose rate by numerical integration of the system of kinetic equations describing radiation chemistry of neutral water, the alkaline solution, and the hydrogenated systems at 300 °C. The importance of the reactions and equilibria constituting the radiolysis scheme of the coolant is assessed. The influence of the presence of a base and the injected H2 on the yield of key reactions responsible for the formation of the main oxidants H2O2 and O2 are discussed. Simulation indicated the synergic effect of H2 gas and base added to the coolant on diminishment of the steady-state concentration of oxidants.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3