Therapeutic Potential of Cathelicidin Peptide LL-37, an Antimicrobial Agent, in a Murine Sepsis Model

Author:

Nagaoka IsaoORCID,Tamura Hiroshi,Reich JohannesORCID

Abstract

Among the mechanisms put-up by the host to defend against invading microorganisms, antimicrobial peptides represent the first line. In different species of mammals, the cathelicidin family of antimicrobial peptides AMPs has been identified, and in humans, LL-37 is the only type of cathelicidin identified. LL-37 has many different biological activities, such as regulation of responses to inflammation, besides its lipopolysaccharide (LPS)-neutralizing and antimicrobial and activities. Recently, employing a murine septic model that involves cecal ligation and puncture (CLP), we examined the effect of LL-37. The results indicated that LL-37 exhibits multiple protective actions on septic mice; firstly, the survival of CLP mice was found to be improved by LL-37 by the suppression of the macrophage pyroptosis that induces the release of pro-inflammatory cytokines (such as IL-1β) and augments inflammatory reactions in sepsis; secondly, the release of neutrophil extracellular traps (NETs), which have potent bactericidal activity, is enhanced by LL-37, and protects mice from CLP-induced sepsis; thirdly, LL-37 stimulates neutrophils to release antimicrobial microvesicles (ectosomes), which improve the pathological condition of sepsis. These findings indicate that LL-37 protects CLP septic mice through at least three mechanisms, i.e., the suppression of pro-inflammatory macrophage pyroptosis and the release of antimicrobial NETs (induction of NETosis) and ectosomes from neutrophils. Thus, LL-37 can be a potential therapeutic candidate for sepsis due to its multiple properties, including the modulation of cell death (pyroptosis and NETosis) and the release of antimicrobial NETs and ectosomes as well as its own bactericidal and LPS-neutralizing activities.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3