An Assessment of Ecological Sensitivity and Landscape Pattern in Abandoned Mining Land

Author:

Shi Yu1,Fan Xiaoxiao1,Ding Xiaoying1,Sun Meiqi1

Affiliation:

1. School of Architecture and Art Design, Hebei University of Technology, Tianjin 300401, China

Abstract

In recent years, the development of abandoned mining land has become a focal point in landscape planning. However, during the development of abandoned mining land, there often exists a phenomenon of prioritizing economic considerations over ecological concerns, leading to a failure to achieve genuinely sustainable development. An ecological sensitivity assessment, guided by the principles of protection and development, provides an evaluation framework that directs planning strategies for abandoned mining land from the perspective of balanced development and conservation. To facilitate the development and construction of abandoned mining land, this paper utilizes GIS technology, on-site surveys, analytic hierarchy processes, etc. Taking the abandoned mining land in Haining, Zhejiang, China, as the research subject and considering its unique site conditions, ecological sensitivity is divided into topographic conditions, surface water systems, and plant landscapes. Ecological sensitivity factors are selected, and an ecological sensitivity assessment system is constructed from the perspectives of ecological conservation and sustainable development. Using ArcGIS 10.2 and Fragstats 4.2 software, landscape pattern analysis is conducted, exploring the relationship between landscape patterns and ecological sensitivity assessment results from the perspectives of landscape fragmentation, diversity, and aggregation. By comparing the results of single-factor sensitivity analysis and comprehensive sensitivity analysis, as well as landscape pattern indices before and after classifying ecologically sensitive areas, the practicality of the evaluation system is verified, facilitating planning studies and providing design recommendations for abandoned mining land. Landscape pattern indices serve as supplementary explanations for ecological sensitivity. Based on the results of ecological sensitivity assessment and landscape pattern indices, the ecological conservation levels in the research area are classified into five categories: the Level I Comprehensive Protection Zone, Level II Moderately Developed Zone, Level III Construction Suitable Zone, Level IV Core Construction Zone, and Level V Core Development Zone. These correspond to ecological protection zones, sightseeing experience zones, historical exhibition zones, core commercial zones, and themed amusement zones, respectively. The I-level sensitive area in the research area has the smallest range, while IV-level and VI-level sensitive areas have larger extents, exhibiting a high degree of overall landscape fragmentation but with diverse and dominant landscape types. Integrating ecological sensitivity assessment results and landscape pattern indices aids in delineating ecological conservation levels and regional functional recreation zones, guiding the rational recreation allocation of resources for abandoned mining land and promoting its development into a scenic area integrating ecology and tourism.

Funder

Art and Science Planning Foundation of Tianjin

Social Science Foundation of Hebei

Industry -Education Cooperation and Education project of the Ministry of Education

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference63 articles.

1. Coordinative enhancement of ecological security and the aesthetic viewing service in the ecological restoration of mining landscapes;Wang;Land Degrad. Dev.,2023

2. Li, X., Lei, S., Liu, F., and Wang, W. (2020). Analysis of plant and soil restoration process and degree of refuse dumps in open-pit coal mining areas. Int. J. Environ. Res. Public Health, 17.

3. Research of landscape design in mine’s eco-environment restoration;He;Adv. Build. Mater. Sustain. Archit.,2012

4. Redevelopment mode and strategy of mining wasteland in an ecosystem service perspective;Dai;Chin. J. Ecol.,2020

5. Optimization and regulation of the abandoned mining land reuse for industrial transformation;Cheng;Trans. Chin. Soc. Agric. Eng.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3