How Do the Dynamics of Urbanization Affect the Thermal Environment? A Case from an Urban Agglomeration in Lower Gangetic Plain (India)

Author:

Das Arijit1,Saha Priyakshi1,Dasgupta Rajarshi2ORCID,Inacio Miguel3ORCID,Das Manob1,Pereira Paulo3

Affiliation:

1. Department of Geography, University of Gour Banga, Malda 732103, India

2. School of Public Policy, IIT Delhi, Hauz Khas, New Delhi 110016, India

3. Environmental Management Laboratory, Mykolas Romeris University, Atheties St. 20, LT-08303 Vilnius, Lithuania

Abstract

Urban growth and development has significantly affected urban heat island (UHI) due to urbanization. Particularly in the cities in developing countries, the assessment of UHI has emerged as one of the core research themes as it significantly affects the ecological environment and livability in cities. Thus, the assessment of UHI is crucial for climate mitigation and sustainable urban landscape planning. This study identifies the dynamics of landscape patterns and the impact of composition and configuration on the thermal environment in English Bazar Urban Agglomeration (EBUA), Eastern India, along the urban–rural gradient (URG) approach. Geospatial approaches and spatial metrics were employed to assess the impact of the landscape pattern on the thermal environment. Descriptive and inferential statistics have also been used to find the effects of landscape patterns on the thermal environment. The result has also been validated based on the location and correlation analysis. The built-up area increased by about 63.54%; vegetation covers and water bodies declined by 56.72% and 67.99% from 2001 to 2021. Land surface temperature (LST) decreased with increasing distance from the core of the city. LST declined by about 0.45 °C per kilometer from the core of the city towards the outside. LST had a positive correlation with IS and a negative correlation with green space (GS) and blue space (BS). The mean aggregation of the impervious patches was larger (73.21%) than the GS (43.18%) and BS (49.02%). The aggregation of impervious surface (IS) was positively correlated, and aggregations of GS and BS had a negative correlation with LST. Findings suggest that the spatial composition and configuration of the impervious surface, GS, and BS must be considered in landscape planning and design framework to make the city more livable.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3