Optimum Distribution System Expansion Planning Incorporating DG Based on N-1 Criterion for Sustainable System

Author:

Mubarak HamzaORCID,Mansor Nurulafiqah NadzirahORCID,Mokhlis HazlieORCID,Mohamad MahazaniORCID,Mohamad HasmainiORCID,Muhammad Munir AzamORCID,Al Samman MohammadORCID,Afzal Suhail

Abstract

Demand for continuous and reliable power supply has significantly increased, especially in this Industrial Revolution 4.0 era. In this regard, adequate planning of electrical power systems considering persistent load growth, increased integration of distributed generators (DGs), optimal system operation during N-1 contingencies, and compliance to the existing system constraints are paramount. However, these issues need to be parallelly addressed for optimum distribution system planning. Consequently, the planning optimization problem would become more complex due to the various technical and operational constraints as well as the enormous search space. To address these considerations, this paper proposes a strategy to obtain one optimal solution for the distribution system expansion planning by considering N-1 system contingencies for all branches and DG optimal sizing and placement as well as fluctuations in the load profiles. In this work, a hybrid firefly algorithm and particle swarm optimization (FA-PSO) was proposed to determine the optimal solution for the expansion planning problem. The validity of the proposed method was tested on IEEE 33- and 69-bus systems. The results show that incorporating DGs with optimal sizing and location minimizes the investment and power loss cost for the 33-bus system by 42.18% and 14.63%, respectively, and for the 69-system by 31.53% and 12%, respectively. In addition, comparative studies were done with a different model from the literature to verify the robustness of the proposed method.

Funder

Universiti Malaya

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3