CFD Investigation of Vehicle’s Ventilation Systems and Analysis of ACH in Typical Airplanes, Cars, and Buses

Author:

Pirouz BehrouzORCID,Mazzeo DomenicoORCID,Palermo Stefania AnnaORCID,Naghib Seyed Navid,Turco MicheleORCID,Piro Patrizia

Abstract

The simulation of the ventilation and the heating, ventilation, and air conditioning (HVAC) systems of vehicles could be used in the energy demand management of vehicles besides improving the air quality inside their cabins. Moreover, traveling by public transport during a pandemic is a concerning factor, and analysis of the vehicle’s cabin environments could demonstrate how to decrease the risk and create a safer journey for passengers. Therefore, this article presents airflow analysis, air changes per hour (ACH), and respiration aerosols’ trajectory inside three vehicles, including a typical car, bus, and airplane. In this regard, three vehicles’ cabin environment boundary conditions and the HVAC systems of the selected vehicles were determined, and three-dimensional numerical simulations were performed using computational fluid dynamic (CFD) modeling. The analysis of the airflow patterns and aerosol trajectories in the selected vehicles demonstrate the critical impact of inflow, outflow, and passenger’s locations in the cabins. The CFD model results exhibited that the lowest risk could be in the airplane and the highest in the bus because of the location of airflows and outflows. The discrete CFD model analysis determined the ACH for a typical car of about 4.3, a typical bus of about 7.5, and in a typical airplane of about 8.5, which were all less than the standard protocol of infection prevention, 12 ACH. According to the results, opening windows in the cars could decrease the aerosol loads and improve the low ACH by the HVAC systems. However, for the buses, a new design for the outflow location or an increase in the number of outflows appeared necessary. In the case of airplanes, the airflow paths were suitable, and by increasing the airflow speed, the required ACH might be achieved. Finally, in the closed (recirculating) systems, the role of filters in decreasing the risk appeared critical.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3