Intelligent Integrated System for Fruit Detection Using Multi-UAV Imaging and Deep Learning

Author:

Melnychenko Oleksandr1,Scislo Lukasz2ORCID,Savenko Oleg1,Sachenko Anatoliy34ORCID,Radiuk Pavlo1ORCID

Affiliation:

1. Faculty of Information Technologies, Khmelnytskyi National University, 11, Instytuts’ka Str., 29016 Khmelnytskyi, Ukraine

2. Faculty of Electrical and Computer Engineering, Cracow University of Technology, Warszawska 24, 31-155 Craków, Poland

3. Department of Informatics and Teleinformatics, Kazimierz Pulaski University of Technology and Humanities in Radom, ul. Malczewskiego 29, 26-600 Radom, Poland

4. Research Institute for Intelligent Computer Systems, West Ukrainian National University, 11, Lvivska Str., 46009 Ternopil, Ukraine

Abstract

In the context of Industry 4.0, one of the most significant challenges is enhancing efficiency in sectors like agriculture by using intelligent sensors and advanced computing. Specifically, the task of fruit detection and counting in orchards represents a complex issue that is crucial for efficient orchard management and harvest preparation. Traditional techniques often fail to provide the timely and precise data necessary for these tasks. With the agricultural sector increasingly relying on technological advancements, the integration of innovative solutions is essential. This study presents a novel approach that combines artificial intelligence (AI), deep learning (DL), and unmanned aerial vehicles (UAVs). The proposed approach demonstrates superior real-time capabilities in fruit detection and counting, utilizing a combination of AI techniques and multi-UAV systems. The core innovation of this approach is its ability to simultaneously capture and synchronize video frames from multiple UAV cameras, converting them into a cohesive data structure and, ultimately, a continuous image. This integration is further enhanced by image quality optimization techniques, ensuring the high-resolution and accurate detection of targeted objects during UAV operations. Its effectiveness is proven by experiments, achieving a high mean average precision rate of 86.8% in fruit detection and counting, which surpasses existing technologies. Additionally, it maintains low average error rates, with a false positive rate at 14.7% and a false negative rate at 18.3%, even under challenging weather conditions like cloudiness. Overall, the practical implications of this multi-UAV imaging and DL-based approach are vast, particularly for real-time fruit recognition in orchards, marking a significant stride forward in the realm of digital agriculture that aligns with the objectives of Industry 4.0.

Funder

Ministry of Education and Science of Ukraine

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3