Author:
Guo Xiaotian,Xie Han,Meng Zihao,Gao Tinghong
Abstract
Owing to the excellent mechanical properties of the Ti3Al alloy, the study of its microstructure has attracted the extensive attention of researchers. In this study, a Ti3Al alloy was grown based on molecular dynamics using a decahedral precursor. Face centered cubic nanocrystals with tetrahedral shapes were formed and connected by twin boundaries (TBs) to form penta twins. To understand the shear response of the Ti3Al alloy with multiple and penta twins, a shear load perpendicular to the Z-axis was applied to the quenched sample. The TBs slipped as Shockley dislocations commenced and propagated under shear loading, causing the detwinning of the penta twins and the failure of the system, indicating that the plastic deformation had been due to Shockley dislocations. The slip mechanism of multi-twinned structures in the Ti3Al alloy is discussed in detail. This study would serve as a useful guide for the design and development of advanced alloy materials.
Funder
the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University
National Natural Science Foundation of China
Subject
General Materials Science,Metals and Alloys
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献