The Effect of Mn on the Mechanical Properties and In Vitro Behavior of Biodegradable Zn-2%Fe Alloy

Author:

Ben Tzion-Mottye Lital,Ron TomerORCID,Eliezer Dan,Aghion EliORCID

Abstract

The attractiveness of Zn-based alloys as structural materials for biodegradable implants mainly relates to their excellent biocompatibility, critical physiological roles in the human body and excellent antibacterial properties. Furthermore, in in vivo conditions, they do not tend to produce hydrogen gas (as occurs in the case of Mg-based alloys) or voluminous oxide (as occurs in Fe-based alloys). However, the main disadvantages of Zn-based alloys are their reduced mechanical properties and their tendency to provoke undesirable fibrous encapsulation due to their relatively high standard reduction potential. The issue of fibrous encapsulation was previously addressed by the authors via the development of the Zn-2%Fe alloy that was selected as the base alloy for this study. This development assumed that the addition of Fe to pure Zn can create a microgalvanic effect between the Delta phase (Zn11Fe) and the Zn-matrix that significantly increases the biodegradation rate of the alloy. The aim of the present study is to examine the effect of up to 0.8% Mn on the mechanical properties of biodegradable Zn-2%Fe alloy and to evaluate the corrosion behavior and cytotoxicity performance in in vitro conditions. The selection of Mn as an alloying element is related to its vital role in the synthesis of proteins and the activation of enzyme systems, as well as the fact that Mn is not considered to be a toxic element. Microstructure characterization was carried out by optical microscopy and scanning electron microscopy (SEM), while phase analysis was obtained by X-ray diffraction (XRD). Mechanical properties were examined in terms of hardness and tensile strength, while corrosion performance and electrochemical behavior were assessed by immersion tests, open circuit potential examination, potentiodynamic polarization analysis and impedance spectroscopy. All the in vitro corrosion testing was performed in a simulated physiological environment in the form of a phosphate-buffered saline (PBS) solution. The cytotoxicity performance was evaluated by indirect cell viability analysis, carried out according to the ISO 10993-5/12 standard using Mus musculus 4T1 cells. The obtained results clearly demonstrate the strengthening effect of the biodegradable Zn-2%Fe alloy due to Mn addition. The effect of Mn on in vitro corrosion degradation was insignificant, while in parallel Mn had a favorable effect on indirect cell viability.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3