Dynamic Ferrite Formation and Evolution above the Ae3 Temperature during Plate Rolling Simulation of an API X80 Steel

Author:

Machado Francisco Romário de S.,Ferreira João C.ORCID,Rodrigues Maria Veronica G.,Lima Marcos Natan da S.ORCID,Loureiro Rodrigo de C. PaesORCID,Siciliano Fulvio,Silva Eden S.,Reis Gedeon S.ORCID,Sousa Regina C. de,Aranas ClodualdoORCID,Abreu Hamilton F. Gomes de,Rodrigues Samuel FilgueirasORCID

Abstract

Thermo-mechanically controlled rolling is a technique used to produce steel strips and plates. One of the steels widely used in the production of heavy plates for application in oil and gas pipelines is API X80. The hot rolling process of this family of steels consists of applying deformation passes at high temperatures, mainly above Ae3, inside the austenite phase field. It has been shown that during deformation, the phenomenon of dynamic transformation (DT) of austenite into ferrite leads to lower hot deformation resistance within the stable austenite region. In this investigation, hot torsion simulations of an industrial rolling process under continuous cooling conditions were used to monitor the formation of ferrite by DT. Stress–strain flow curves and equivalent mean flow stresses followed by sample characterization via optical and electron microscopy showed the inevitable formation of ferrite above the Ae3. The employed 10-pass deformation schedule was divided into 5 roughing and 5 finishing passes, thereby promoting an increased volume fraction of ferrite and decreased critical strain for the onset of DT and dynamic recrystallization (DRX). A microstructural analysis confirmed the formation of ferrite from the first roughing strain until the last finishing pass. The volume fraction of DT ferrite increased due to strain accumulation, an increased number of deformation passes and as the temperature approached the Ae3, leading to a characteristic torsion texture at the end of the simulation.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3