Abstract
In the paper, Ti-18Nb-5X (X = Mo and Sn) and Ti-33Nb-2X (X = Al, Sn, Fe and Mo) alloys were investigated to evaluate the effects of Al, Mo, Sn and Fe doping and different heat treatments on the properties and microstructures of the Ti-Nb-based alloys. The results show that Al decreased the volume of βM in the water-quenched Ti-33Nb-2Al alloy and promoted the formation of β phase in the furnace-cooled Ti-33Nb-2Al alloy. Fe-doping was proven to stabilize the β phase. Sn-doping plays a complicated role to promote the formation of α′′ phase in the water-quenched Ti-33Nb-2Sn alloys but increases the β phase in the furnace-cooled Ti-33Nb-2Sn alloys and Ti-18Nb-5Mo-5Sn. The alloys containing α′′ and βM phases show larger superelastic strains and lower Young’s moduli. In the water-quenched Ti-based alloys, the Young’s modulus decreases, and the superelastic strain is enhanced with the increasing volume of α′′.
Funder
Research Center of New Functional Materials and Intelligent Testing Instruments in Suzhou Vocational University
Subject
General Materials Science,Metals and Alloys
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献