Modelling of Strain-Controlled Thermomechanical Fatigue Testing of Cast AlSi7Cu3.5Mg0.15 (Mn, Zr, V) Alloy for Different Aging Conditions

Author:

Heugue PierreORCID,Larouche DanielORCID,Breton Francis,Martinez Rémi,Chen X.-GrantORCID,Massinon Denis

Abstract

Thermomechanical fatigue loadings (TMF) applied on components in a certain temperature range with a variable state of stress (tensile and/or compression) produce a localized concentration of plastic strains that results in crack initiation and propagation. The time evolution of plastic strains must be known a priori to predict the lifetime of a part submitted to TMF loadings, which requires an extensive campaign of mechanical characterization conducted at different temperatures and aging conditions. Such a campaign was proposed for the aluminum alloy AlSi7Cu3.5Mg0.15 (Mn, Zr, V), which is recognized as being creep resistant. Combined isothermal low-cycle fatigue and isothermal creep tests were performed on this alloy to determine the constitutive parameters based on the Lemaître and Chaboche (LM&C) viscoplastic model. These laws were implemented within the finite element simulation software (Z-set) to model the response of the alloy to a thermomechanical fatigue test. The results of TMF Z-Set simulations, using the LM&C model adapted for two aging conditions, were then compared with results obtained from “Out of Phase” thermomechanical fatigue testings (OP-TMF) performed on a Gleeble 3800 machine. The modelling of the OP-TMF test revealed the complexity of the mechanical behavior of the material induced by the temperature gradient prevailing along with the cylindrical specimen. It was found that a better prediction of the evolution of plastic strains requires taking into account a larger range of plastic strain rates conditions for the determination of the constitutive law and eventually includes the role of the microstructure in the evolution of the material behavior, starting first with the yield stress.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3