Influence of Deposition Parameters on Structural and Electrochemical Properties of Ti/Ti2N Films Deposited by RF-Magnetron Sputtering

Author:

González-Hernández Andrés,Aperador WilliamORCID,Flores MartínORCID,Onofre-Bustamante Edgar,Bermea Juan E.,Bautista-García Roberto,Gamboa-Soto Federico

Abstract

The titanium nitride (Ti2N) films have good mechanical properties, such as high hardness and chemical stability, giving Ti2N good resistance to wear and corrosion. The properties of films deposited by PVD techniques are determined by their structure, microstructure, composition, and morphology that depend on the deposition parameters, such as substrate temperature, vacuum pressure, and the distance between the target and the substrate. The influence of these parameters has been studied individually. This work studied the structure, morphology, composition, and electrochemical behavior of Ti/Ti2N films deposited by RF-magnetron sputtering on carbon steel, such as a function of the power of the RF source, substrate temperature, and the target to substrate distance and the Ar/N2 ratio. The film structure was analyzed by X-ray diffraction (XRD), the morphology of cross-section by SEM, the semi-quantitative composition by EDS, and the electrochemical properties was studied by open circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy techniques. The films showed two phases of Ti and Ti2N. The SEM-EDS exhibited a morphology according to the Stranski–Krastanov or layer-plus-island growth model. The substrate temperature of 450 °C strongly influences the electrochemical properties.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference42 articles.

1. Structural and functional materials;Atkinson,2002

2. Cutting Tool Materials and Tool Wear

3. Overview of Surface Engineering and Wear

4. On wear resistance of tool steel

5. Application of Metal Cutting Theory;Gorozyca,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3