Electron Beam Welding and Post Heat Treatment of a New Near-Beta High-Strength Ti-4Al-5Mo-5V-5Cr-1Nb Alloy

Author:

Zhang Xinquan,Li Jinshan,Tao Manfei,Wan Jie,Chen BiaoORCID

Abstract

Ti-4Al-5Mo-5V-5Cr-1Nb (wt.%) is a new type of high-strength (~1300 MPa) titanium (Ti) alloy developed for aerospace applications. Until now, the research on its welding and subsequent heat treatment is barren. Herein, we employed electron beam welding (EBW) to a solutionized Ti-4Al-5Mo-5V-5Cr-1Nb with a phase constituent of α + β and investigated its microstructure and mechanical properties in both as-welded (AW) and post-weld aging treated (PWAT) conditions. Results showed that due to the thermal input of the welding process, the α phase in the original microstructure of base material (BM) transformed into the β phase in the fusion zone (FZ). Similar microstructural evolution was observed for the heat-affected zone (HAZ) near the FZ (Near-HAZ), whereas the HAZ far away from FZ (Far-HAZ) contained a small amount of round α phase (ghost α) due to its slower cooling rate. Such a microstructural change resulted in poor tensile strength (~780 Mpa) for the as-welded joint. After PWAT, a large number of acicular α precipitated in the FZ and HAZ and its size (S) in different zones followed the order of SFar-HAZ < SFZ ≈ SNear-HAZ < SBM. The presence of αs precipitates remedied the tensile strength of the weld joint almost to the same as that of the BM. The present findings established the foundation of the application of this high-strength Ti alloy.

Funder

National Key Research and Development Program of China

Research Fund of the State Key Laboratory of Solidification Processing (NPU), China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3