Efficient Multi-Material and High Deposition Coating including Additive Manufacturing by Tandem Plasma Transferred Arc Welding for Functionally Graded Structures

Author:

Ertugrul GökhanORCID,Hälsig Andre,Hensel JonasORCID,Buhl Johannes,Härtel Sebastian

Abstract

Market demands coating processes with high-performance, high reliability, high flexibility for processing of complex geometries and multi-material depositions, as well as increased deposition rates. The systematic coupling of two plasma transferred arc welding systems that interact in the same melt pool to form a tandem Plasma Transferred Arc (PTA) system accomplishes these tasks. Previous research has shown that the deposition rate with the tandem PTA method reaches 240 percent when comparing to the conventional single torch PTA method. Within one layer, up to four different powders and powder fractions can be combined at the same time. This allows for the creation of multi-material coatings that are suitable for sustaining high mechanical loads and wear- and temperature-resistant surfaces by use of tungsten carbides (WC). This study examines and analyzes defined functionally graded structures made from super duplex steel 1.4410 and corrosion resistant austenitic steel 1.4404. The mechanical-chemical properties of the tandem PTA system can be precisely controlled by changing the powder feeding positions. Furthermore, an additively manufactured specimen from previous studies is examined and evaluated. A direct comparison with conventional single torch PTA was performed to demonstrate the benefits of the tandem PTA-process.

Funder

Central Innovation Program

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3