The Effect of Air Parameters on the Evaporation Loss in a Natural Draft Counter-Flow Wet Cooling Tower

Author:

Yuan Wei,Sun Fengzhong,Liu Ruqing,Chen Xuehong,Li Ying

Abstract

The measures to reduce the impact of evaporation loss in a natural draft counter-flow wet cooling tower (NDWCT) have important implications for water conservation and emissions reduction. A mathematical model of evaporation loss in the NDWCT was established by using a modified Merkel method. The NDWCTs in the 300 MW and 600 MW power plant were taken as the research objects. Comparing experimental values with calculated values, the relative error was less than 3%. Then, the effect of air parameters on evaporation loss of NDWCT was analyzed. The results showed that, with the increase of dry bulb temperature, the evaporation heat dissipation and the evaporation loss decreased, while the rate of evaporation loss caused by unit temperature difference increased. The ambient temperature increased by 1 °C and the evaporation loss was reduced by nearly 26.65 t/h. When the relative air humidity increased, the evaporation heat dissipation and evaporation loss decreased, and the rate of evaporation loss caused by unit temperature difference decreased. When relative air humidity increased by 1%, the outlet water temperature rose by about 0.08 °C, and the evaporation loss decreased by about 5.63 t/h.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3