The Formation of a Flame Front in a Hydrogen–Air Mixture during Spark Ignition in a Semi-Open Channel with a Porous Coating

Author:

Golovastov Sergey1ORCID,Bivol Grigory1,Kuleshov Fyodor1,Golub Victor1

Affiliation:

1. Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia

Abstract

An experimental study of ignition and flame front propagation during spark initiation in a hydrogen–air mixture in a semi-open channel with a porous coating is reported. The bottom surface of the channel was covered with a porous layer made of porous polyurethane or steel wool. The measurements were carried out for a stoichiometric mixture (equivalence ratio ER = 1.0) and for a lean mixture (ER = 0.4) of hydrogen with air, where ER is the molar excess of hydrogen. The flame front was recorded with a high-speed camera using the shadow method. Depending on the pore size, the velocity of the flame front and the sizes of disturbances generated on the surface of the flame front were determined. Qualitative features of the deflagration flame front at ER = 0.4, consisting of disturbances resembling small balls of flame, were discovered. The sizes of these disturbances significantly exceed the analytical values for the Darrieus–Landau instability. The effect of coatings made of porous polyurethane or steel wool is compared with the results obtained for an empty smooth channel. Depending on the hydrogen concentration in the hydrogen–air mixture, the velocity of the flame front compared to a smooth channel was three times higher when the channel was covered with steel wool and five times higher when the channel was covered with porous polyurethane.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3