Sensitivity Analysis of Influencing Factors of Fire Smoke Transport on Subway Station Platforms

Author:

Song Huaitao12ORCID,Chen Qianlong12,Wu Zeqi12ORCID,Yao Haowei12,Lou Zhen12,Bai Zhenpeng12,Li Jingfen12,Yu Yueyang12

Affiliation:

1. College of Building Environment Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China

2. Zhengzhou Key Laboratory of Electric Power Fire Safety, Zhengzhou 450001, China

Abstract

This paper investigates the sensitivity of factors influencing the transport of smoke in subway station fires by developing a three-dimensional physical model of a subway station using Building Information Modeling (BIM) technology and importing it into Fire Dynamics Simulator (FDS) software for numerical simulation. The orthogonal test method analyzes the effects of four common factors on temperature, CO concentration, and visibility. These factors are the mode of opening the screen door, the number of smoke vents opened, the number of smoke barriers, and the wind speed of the smoke vents. The results show that the smoke control system and the building structure influence smoke transport in subway stations, while the temperature and CO concentration gradually decrease as the distance from the fire source increases. In addition, the mode of opening the screen door is the most significant factor influencing temperature, CO concentration, and visibility using range and variance analysis. Moreover, the sensitivity analysis indicates that the optimal combination of all factors can significantly enhance the smoke exhaust efficiency. Compared with the average, the temperature optimal combination increases the smoke exhaust efficiency by 20.8%, CO concentration by 56.59%, and visibility by about 13.41%. This study provides a foundation for optimizing smoke control systems and formulating personnel evacuation strategies in subway stations.

Funder

National Natural Science Foundation of China

Henan Provincial Science and Technology Research Project

Henan Province Key R&D Special Project

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3