Mechanisms of CO and CO2 Production during the Low-Temperature Oxidation of Coal: Molecular Simulations and Experimental Research

Author:

Wang Yongjing123,Sun Yong3,Dai Lihui3,Wang Kun3,Cheng Gang4

Affiliation:

1. College of Safety, China Coal Research Institute, Beijing 100013, China

2. State Key Laboratory of Coal Mine Safety Technology, Fushun 113122, China

3. CCTEG Shenyang Research Institute, Fushun 113122, China

4. School of Geology and Mining Engineering, Xinjiang University, Urumqi 830047, China

Abstract

The spontaneous combustion of coal caused by oxidation often leads to catastrophic fires. However, the understanding of oxidized carbon gas as a predictor of coal’s spontaneous combustion is still in its infancy. To better study the characteristics of CO2 and CO generation during low-temperature coal oxidation, the chemical reactions and activation energies during the formation of oxidized carbon gases within coal molecules were investigated using the molecular simulation method, and the reaction characteristics at different temperatures were determined. In addition, TG was used to experimentally analyze the variations in coal weight, exothermic conditions, and gas generation patterns. The results show that the low-temperature oxidation process consists of four different phases, each of which is characterized by unique CO and CO2 generation. The results of this study are important for the prevention and prediction of the spontaneous combustion of coal.

Funder

National Key Research and Development Program

Introduction Plan for “Tianchi Talent” in Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3