Evaluation of the Biocompatibility and Osteoconduction of the Carbon Nanotube, Chitosan and Hydroxyapatite Nanocomposite with or without Mesenchymal Stem Cells as a Scaffold for Bone Regeneration in Rats

Author:

Marcondes Geissiane M.,Paretsis Nicole F.,Fülber Joice,Navas-Suárez Pedro EnriqueORCID,Mori Claudia M. C.ORCID,Plepis Ana Maria G.,Martins Virginia C. A.,Fantoni Denise T.,Zoppa André L. V.ORCID

Abstract

Background: Bone substitutes have been developed to assist bone regeneration in orthopedic surgeries. Mesenchymal stem cells can be added to these biomaterials to enhance bone regeneration. This study aimed to evaluate the biocompatibility and osteoconduction of a carbon nanotube, chitosan, and hydroxyapatite nanocomposite (CNCHN) that had either been enriched or not enriched with sheep bone marrow mesenchymal stem cells (BM-MSCs) in rats. Methods: A total of sixty rats were divided into groups, and an implant with or without BM-MSCs was performed subcutaneously in 20 animals (euthanized after 7 and 30 days), comparing them to 10 control animals, and in the calvaria of 20 animals (euthanized after 20 and 60 days), comparing to with 10 control animals. Subcutaneous and calvaria histologies were performed after euthanasia. Results: The subcutaneous tissue showed that CNCHN did not prompt an exacerbated inflammatory response or signs of necrosis. The histomorphological analysis by the calvaria score of the rats showed that the control group had lower scores at 20 and 60 days for bone neoformation, relative to the CNCHN groups, which showed no significant statistical differences, suggesting that the nanocomposite assisted in the regenerative process of defects in the calvaria, but with no repair potentiation when using BM-MSCs. Conclusion: CNCHN has biocompatibility and osteoconductive potential, showing promising results in bone defects.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3