Human Middle Ear Anatomy Based on Micro-Computed Tomography and Reconstruction: An Immersive Virtual Reality Development

Author:

Cheng Kai1ORCID,Curthoys Ian2ORCID,MacDougall Hamish3,Clark Jonathan Robert145ORCID,Mukherjee Payal1

Affiliation:

1. Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Sydney, NSW 2050, Australia

2. Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia

3. School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia

4. Department of Head and Neck Surgery, Chris O’Brien Lifehouse Cancer Centre, Sydney, NSW 2050, Australia

5. Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia

Abstract

Background: For almost a decade, virtual reality (VR) has been employed in otology simulation. The realism and accuracy of traditional three-dimensional (3D) mesh models of the middle ear from clinical CT have suffered because of their low resolution. Although micro-computed tomography (micro-CT) imaging overcomes resolution issues, its usage in virtual reality platforms has been limited due to the high computational requirements. The aim of this study was to optimize a high-resolution 3D human middle ear mesh model suitable for viewing and manipulation in an immersive VR environment using an HTC VIVE VR headset (HTC and Valve Corporation, USA) to enable a seamless middle ear anatomical visualisation viewing experience in VR while preserving anatomical accuracy. Methods: A high-resolution 3D mesh model of the human middle ear was reconstructed using micro-CT data with 28 μm voxel resolution. The models were optimised by tailoring the surface model polygon counts, file size, loading time, and frame rate. Results: The optimized middle ear model and its surrounding structures (polygon counts reduced from 21 million polygons to 2.5 million) could be uploaded and visualised in immersive VR at 82 frames per second with no VR-related motion sickness reported. Conclusion: High-resolution micro-CT data can be visualized in an immersive VR environment after optimisation. To our knowledge, this is the first report on overcoming the translational hurdle in middle ear applications of VR.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3