A Metric Based on the Efficient Determination Criterion

Author:

García Jesús E.1ORCID,González-López Verónica A.1ORCID,Gomez Sanchez Johsac I.1

Affiliation:

1. Department of Statistics, University of Campinas, Campinas 13083-859, São Paulo, Brazil

Abstract

This paper extends the concept of metrics based on the Bayesian information criterion (BIC), to achieve strongly consistent estimation of partition Markov models (PMMs). We introduce a set of metrics drawn from the family of model selection criteria known as efficient determination criteria (EDC). This generalization extends the range of options available in BIC for penalizing the number of model parameters. We formally specify the relationship that determines how EDC works when selecting a model based on a threshold associated with the metric. Furthermore, we improve the penalty options within EDC, identifying the penalty ln(ln(n)) as a viable choice that maintains the strongly consistent estimation of a PMM. To demonstrate the utility of these new metrics, we apply them to the modeling of three DNA sequences of dengue virus type 3, endemic in Brazil in 2023.

Funder

CAPES with fellowships from the Master Graduate Program in Statistics—University of Campinas

Publisher

MDPI AG

Reference11 articles.

1. On determination of the order of a Markov chain;Zhao;Stat. Inference Stoch. Process.,2001

2. García Jesús, E., and González-López, V.A. (2017). Consistent Estimation of Partition Markov Models. Entropy, 19.

3. García, J.E., González-López, V.A., Tasca, G.H., and Yaginuma, K.Y. (2022). An Efficient Coding Technique for Stochastic Processes. Entropy, 24.

4. Pereira, D.F.S. (2021). Critério de Determinação Eficiente Para Estimação de Cadeias de Markov de Partição Mínima. [Master’s Thesis, University of Brasilia]. Available online: http://repositorio2.unb.br/jspui/handle/10482/42891.

5. Optimal penalty term for EDC Markov chain order estimator;Dorea;Ann. de l’ISUP,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3