DSM Extraction Based on Gaofen-6 Satellite High-Resolution Cross-Track Images with Wide Field of View

Author:

Yin Suqin1,Zhu Ying1,Hong Hanyu1,Yang Tingting1,Chen Yi1,Tian Yi1

Affiliation:

1. Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China

Abstract

Digital Surface Model (DSM) is a three-dimensional model presenting the elevation of the Earth’s surface, which can be obtained by the along-track or cross-track stereo images of optical satellites. This paper investigates the DSM extraction method using Gaofen-6 (GF-6) high-resolution (HR) cross-track images with a wide field of view (WFV). To guarantee the elevation accuracy, the relationship between the intersection angle and the overlap of the cross-track images was analyzed. Cross-track images with 20–40% overlaps could be selected to conduct DSM extraction. First, the rational function model (RFM) based on error compensation was used to realize the accurate orientation of the image. Then, the disparity map was generated based on the semi-global block matching (SGBM) algorithm with epipolar constraint. Finally, the DSM was generated by forward intersection. The GF-6 HR cross-track images with about 30% overlap located in Taian, Shandong Province, China, were used for DSM extraction. The results show that the mountainous surface elevation features were retained completely, and the details, such as houses and roads, were presented in valleys and urban areas. The root mean square error (RMSE) of the extracted DSM could reach 6.303 m, 12.879 m, 14.929 m, and 19.043 m in valley, ridge, urban, and peak areas, respectively. The results indicate that the GF-6 HR cross-track images with a certain overlap can be used to extract a DSM to enhance its application in land cover monitoring.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Wuhan Knowledge Innovation Special Project

Science Foundation Project of Wuhan Institute of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3