Experimental Study of Surface Roughness of Pine Wood by High-Speed Milling

Author:

Yang Chunmei12,Ma Yaqiang12,Liu Tongbin12,Ding Yucheng23,Qu Wen12

Affiliation:

1. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China

2. Forestry and Woodworking Machinery Engineering Technology Center, Northeast Forestry University, Harbin 150040, China

3. College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China

Abstract

The surface roughness of wood has a great influence on its performance and is a very important indicator in processing and manufacturing. In this paper, we use the central composite design experiment (CCD experiment) and artificial neural network (ANN) model to study the changing pattern of surface roughness during the high-speed milling process of pine wood. In the CCD experiments, the spindle speed, feed speed, and depth of cut are used as the influencing factors, and the surface roughness is used as the index to analyze the variation law and fit the surface roughness parameter equation. By measuring the chip size in each group in the CCD experiment, the ANN model is used to predict the surface roughness under this machining parameter by measuring the chip size in each test group. The experimental results showed that the mean error of the surface roughness prediction values in the CCD experiment (12.2%) was larger than that of the ANN model (7.8%), and the mean squared error (MSE) of the ANN model was 0.025, the mean absolute percentage error(MAPE) was 0.01, and the coefficient of determination R2 was 0.95. Compared with the CCD experiment, the ANN model had a higher prediction accuracy. The results of this paper can provide some guidance for the prediction of surface roughness during wood processing.

Funder

Heilongjiang Province Key R&D Project “Key Technology Research on 5G-based Digital Collaborative Processing Center for Passive Green Building Doors and Windows

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3