Abstract
Wind and temperature observation in near space has been playing an increasingly important role in atmospheric physics and space science. This paper reports on the near-space wind and temperature sensing interferometer (NWTSI), which employs a wide-angle Michelson interferometer to observe O2(a1Δg) dayglow near 1.27 μm from a limb-viewing satellite, and presents the instrument modeling and observation simulations from the stratosphere to the mesosphere and lower thermosphere. The characteristics of atmospheric limb-radiance spectra and line selection rules are described. The observational strategy of using two sets of three emission lines with a line-strength difference of one order of magnitude is proved to be suitable for extending altitude coverage. The forward modeling and measurement simulation of the expected NWTSI observations are provided, and the measurement uncertainty of the wind and temperature is discussed. The signal-to-noise ratio (SNR) and the limb-view weight work together to affect the precision of the wind and temperature measurements. The simulated results indicate a wind measurement precision of 1 to 3 m/s and a temperature precision of 1 to 3 K over an altitude range from 40 to 80 km, which meets the observing requirement in measurement precision for near-space detection.
Funder
National Natural Science Foundation of China
Open Research Fund of Key Laboratory of Spectral Imaging Technology, Chinese Academy of Sciences
Subject
General Earth and Planetary Sciences
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献