Particle Swarm Optimization-Based Noise Filtering Algorithm for Photon Cloud Data in Forest Area

Author:

Huang JiapengORCID,Xing Yanqiu,You Haotian,Qin Lei,Tian Jing,Ma Jianming

Abstract

The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2), which is equipped with the Advanced Topographic Laser Altimeter System (ATLAS), was launched successfully in 15 September 2018. The ATLAS represents a micro-pulse photon-counting laser system, which is expected to provide more comprehensive and scientific data for carbon storage. However, the ATLAS system is sensitive to the background noise, which poses a tremendous challenge to the photon cloud noise filtering. Moreover, the Density Based Spatial Clustering of Applications with Noise (DBSCAN) is a commonly used algorithm for noise removal from the photon cloud but there has not been an in-depth study on its parameter selection yet. This paper presents an automatic photon cloud filtering algorithm based on the Particle Swarm Optimization (PSO) algorithm, which can be used to optimize the two key parameters of the DBSCAN algorithm instead of using the manual parameter adjustment. The Particle Swarm Optimization Density Based Spatial Clustering of Applications with Noise (PSODBSCAN) algorithm was tested at different laser intensities and laser pointing types using the MATLAS dataset of the forests located in Virginia, East Coast, and the West Coast, USA. The results showed that the PSODBSCAN algorithm and the localized statistical algorithm were effective in identifying the background noise and preserving the signal photons in the raw MATLAS data. Namely, the PSODBSCAN achieved the mean F value of 0.9759, and the localized statistical algorithm achieved the mean F value of 0.6978. For both laser pointing types and laser intensities, the proposed algorithm achieved better results than the localized statistical algorithm. Therefore, the PSODBSCAN algorithm could support the MATLAS photon cloud data noise filtering applicably without manually selecting parameters.

Funder

Key Laboratory of Satellite Mapping Technology and Application, National Administration of Surveying, Mapping and Geoinformation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3