A New Integrated Vegetation Index for the Estimation of Winter Wheat Leaf Chlorophyll Content

Author:

Cui ,Zhao ,Huang ORCID,Song ORCID,Ye ,Zhou

Abstract

Leaf chlorophyll content (LCC) provides valuable information about the nutrition and photosynthesis statuses of crops. Vegetation index-based methods have been widely used in crop management studies for the non-destructive estimation of LCC using remote sensing technology. However, many published vegetation indices are sensitive to crop canopy structure, especially the leaf area index (LAI), when crop canopy spectra are used. Herein, to address this issue, we propose four new spectral indices (The red-edge-chlorophyll absorption index (RECAI), the red-edge-chlorophyll absorption index/optimized soil-adjusted vegetation index (RECAI/OSAVI), the red-edge-chlorophyll absorption index/ the triangular vegetation index (RECAI/TVI), and the red-edge-chlorophyll absorption index/the modified triangular vegetation index(RECAI/MTVI2)) and evaluate their performance for LCC retrieval by comparing their results with those of eight published spectral indices that are commonly used to estimate LCC. A total of 456 winter wheat canopy spectral data corresponding to physiological parameters in a wide range of species, growth stages, stress treatments, and growing seasons were collected. Five regression models (linear, power, exponential, polynomial, and logarithmic) were built to estimate LCC in this study. The results indicated that the newly proposed integrated RECAI/TVI exhibited the highest LCC predictive accuracy among all indices, where R2 values increased by more than 13.09% and RMSE values reduced by more than 6.22%. While this index exhibited the best association with LCC (0.708** ≤ r ≤ 0.819**) among all indices, RECAI/TVI exhibited no significant relationship with LAI (0.029 ≤ r ≤ 0.167), making it largely insensitive to LAI changes. In terms of the effects of different field management measures, the LCC predictive accuracy by RECAI/TVI can be influenced by erective winter wheat varieties, low N fertilizer application density, no water application, and early sowing dates. In general, the newly developed integrated RECAI/TVI was sensitive to winter wheat LCC with a reduction in the influence of LAI. This index has strong potential for monitoring winter wheat nitrogen status and precision nitrogen management. However, further studies are required to test this index with more diverse datasets and different crops.

Funder

the National Natural Science Foundation of China

the Youth Innovation Promotion Association CAS

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3