Abstract
Intensive use of engineered nanoparticles (NPs) in daily products ineluctably results in their release into aquatic systems and consequently into drinking water resources. Therefore, understanding NPs behavior in various waters from naturel to mineral waters is crucial for risk assessment evaluation and the efficient removal of NPs during the drinking water treatment process. In this study, the impact of relevant physicochemical parameters, such as pH, water hardness, and presence of natural organic matter (NOM) on the surface charge properties and aggregation abilities of both NPs and nanoplastic particles is investigated. TiO2, CeO2, and Polystyrene (PS) nanoplastics are selected, owing to their large number applications and contrasting characteristics at environmental pH. Experiments are performed in different water samples, including, ultrapure water, three bottled mineral waters, Lake Geneva, and drinking water produced from Lake Geneva. Our findings demonstrate that both water hardness and negatively charged natural organic matter concentrations, which were measured via dissolved organic carbon determination, are playing important roles. At environmental pH, when negatively charged nanoparticles are considered, specific cation adsorption is promoting aggregation so long as NOM concentration is limited. On the other hand, NOM adsorption is expected to be a key process in NPs destabilization when positively charged PS nanoplastics are considered.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献