Phase Coherence Imaging for Near-Surface Defects in Rails Using Cross-Correlation of Ultrasonic Diffuse Fields

Author:

Zhang Haiyan,Shao Mintao,Fan GuopengORCID,Zhang Hui,Zhu Wenfa,Zhu Qi

Abstract

In this paper, phase coherence imaging is proposed to improve spatial resolution and signal-to-noise ratio (SNR) of near-surface defects in rails using cross-correlation of ultrasonic diffuse fields. The direct signals acquired by the phased array are often obscured by nonlinear effects. Thus, the output image processed by conventional post-processing algorithms, like total focus method (TFM), has a blind zone close to the array. To overcome this problem, the diffuse fields, which contain spatial phase correlations, are applied to recover Green’s function. In addition, with the purpose of improving image quality, the Green’s function is further weighted by a special coherent factor, sign coherence factor (SCF), for grating and side lobes suppression. Experiments are conducted on two rails and data acquisition is completed by a commercial 32-element phased array. The quantitative performance comparison of TFM and SCF images is implemented in terms of the array performance indicator (API) and SNR. The results show that the API of SCF is significantly lower than that of TFM. As for SNR, SCF achieved a better SNR than that of TFM. The study in this paper provides an experimental reference for detecting near-surface defects in the rails.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3