Enhanced Stress Corrosion Cracking Resistance of Ultrafine-Grained Cu-Cr-Zr Alloy Fabricated via Equal-Channel Angular Pressing

Author:

Wang Qingjuan,Liu Dan,Tong Libo,Zhou Ying,Wang WeiORCID,Zhou Haixiong,Fan Ruixue

Abstract

The microstructure evolution and stress corrosion cracking (SCC) behaviors of ultrafine-grained (UFG) Cu-Cr-Zr alloys processed by equal-channel angular pressing (ECAP) and coarse-grain (CG) Cu-Cr-Zr alloys within NaNO2 solution were systematically investigated in the current study. After deformation by eight ECAP passes, the grain size was refined to ~200 nm. The slow strain rate tensile (SSRT) tests showed that the ultimate tensile strength (UTS) of CG samples in solution was slightly lower than that in the air, and the elongation was decreased from 57.3% to 52.6%. In contrast, both the UTS and elongation of UFG samples in air and solution were almost identical. In NaNO2 solution, the CG fracture surface showed an obvious dissolution, microvoids, and minor cracks, while the surface of the UFG fracture was relatively smooth. The resistance of UFG samples to SCC could be significantly enhanced compared with CG samples. The grain boundary volume fraction of UFG alloy was dramatically increased, which reduced the formation of pitting corrosion. In addition, the uniform distribution of Cr particles also improved the corrosion resistance of UFG alloys.

Funder

National Natural Science Foundation of China

the Xi'an Science and Technology Plan Project

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3