Spatial Distribution and Sources of Organic Matter in the Surface Sediments of Fuxian Lake, SW China

Author:

Zhang Kai12,Li Dongli3,He Xuejun2,Xie Changyuan4,He Haibo24ORCID

Affiliation:

1. School of Mechanical and Electronic Engineering, Hefei Technology College, Hefei 238000, China

2. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang 550081, China

3. Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China

4. Yunnan Key Laboratory of Earth System Science, Yunnan University, Kunming 650500, China

Abstract

Sedimentary organic matter is an important component of the metabolism of a lake’s ecosystem, and it is generally derived from both the watershed and the primary productivity of a lake. Understanding the sources of organic matter in lakes and lake trophic status is important when evaluating the quality of lake ecosystems. We summarize the spatial distribution of total nitrogen (TN), total organic carbon (TOC), TOC/TN (C/N) molar ratios, and organic carbon isotope (δ13Corg) of the surface sediments of Fuxian Lake, Yunnan–Guizhou Plateau, Southwest China, which is the second deepest freshwater oligotrophic lake in China. The results show that the distributions of TN, TOC, C/N, and δ13Corg of the surface sediments are spatially heterogeneous, which is also the case for the trophic conditions of the lake. Compared with the adjacent eutrophic lakes and typical lakes in other areas with strong human activities, the content of organic matter is at a low level. Meanwhile, the autochthonous organic carbon in the surface sediments was characterized by lower δ13Corg (−25.3~−28.5) and C/N (8.7~12.9), suggesting that the biological carbon pump effect plays a significant part in the stability of carbon sinks by coupling with carbonate weathering. Our results emphasize the importance of the carbon sink of coupled carbonate weathering and aquatic photosynthesis in the evolution of the carbon cycle in lakes. Although modern monitoring shows that Fuxian Lake is an oligotrophic lake, there are potential risks of organic nitrogen pollution with respect to surface sediments, especially in northern and southern shallow-water areas. The organic pollution of lakes can be reduced by controlling the discharge of wastewater and reducing the nutrient loading of agricultural runoff.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Science

Key Natural Science Research Project of Heifei Technology College

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3