Recent Advances on Chemically Functionalized Cellulose-Based Materials for Arsenic Removal in Wastewater: A Review

Author:

Motloung Mary T.1,Magagula Sifiso I.1,Kaleni Andiswa1,Sikhosana Tlholohelo S.1,Lebelo Kgomotso1ORCID,Mochane Mokgaotsa J.1ORCID

Affiliation:

1. Department of Life Sciences, Central University of Technology Free State, Private Bag X20539, Bloemfontein 9300, South Africa

Abstract

Clean water is very important for the good health of society. In South Africa, it is estimated that people need 20 to 50 litres of safe water daily for basic hygiene, drinking, and cooking. In recent times, water bodies have harboured harmful pollutants, including oil, heavy metal ions, and dyes. As a result, this has become a major global concern. Societies with limited clean water are often forced to utilise contaminated water or buy filtered water, which might be a problem for poor residents. The health consequences that are related to contaminated water include Guinea worm disease, dysentery, cholera, etc. The side effects associated with the utilisation of unclean water are gastrointestinal diseases such as cramps, vomiting, and diarrhoea. The wastewater disposed of by chemical industries contains toxic elements such as arsenic. Wastewater that is released directly without treatment causes serious damage to the environment. Chronic arsenic poisoning can lead to keratinisation of the skin and even cancer. Cellulose biomass materials have the potential to become the greatest bio-based materials used in wastewater treatment applications. There are two major reasons that validate this statement: firstly, cellulose is a low-cost material that is abundant in nature, and, secondly, cellulose is an environmentally friendly material. However, these are not the only reasons that validate cellulose as a good candidate for wastewater treatment applications. Cellulose has a unique structure a large surface area, good mechanical properties and is degradable, renewable, and biocompatible. Cellulose also has an abundance of hydroxyl groups on its surface. These hydroxyl functional groups allow cellulose to be chemically modified in various ways, which results in the fabrication of nanocomposites with tunable characteristics. Since arsenic pollution has become a serious global concern, this review uniquely provides a broad discussion of the work that has been accomplished recently on the fabrication of functionalised cellulose-based materials designed specifically for the removal of arsenic heavy metal species from wastewater treatment facilities. Furthermore, the functionalised cellulose materials’ arsenic adsorption capacities are also discussed. These adsorption capacities can reach up to a maximum of 350 mg/g, depending on the system used. Factors such as pH and temperature are discussed in relation to the adsorption of arsenic in wastewater. The removal of As(V) was found to be effective in the pH range of 3.0–8.8, with a removal efficiency of 95%. Moreover, the removal efficiency of As(III) was reported to be effective in the pH range of 6–9. However, the effective pH range also depends on the system used. The selective extraction of cellulose from various sources is also discussed in order to verify the percentage of cellulose in each source. Future work should be focused on how the chemical modification of cellulose affects the toxicity, efficiency, selectivity, and mechanical stability of cellulose materials. The use of cheaper and environmentally friendly chemicals during cellulose functionalisation should be considered.

Funder

National Research Foundation [NRF]

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3