Effects of Substrate and Annealing Conditions on the Ferroelectric Properties of Non-Doped HfO2 Deposited by RF Plasma Sputter

Author:

Lim Seokwon1ORCID,Ahn Yeonghwan2,Won Beomho1,Lee Suwan1,Park Hayoung1,Kumar Mohit2,Seo Hyungtak12ORCID

Affiliation:

1. Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea

2. Department of Materials Science & Engineering, Ajou University, Suwon 16499, Republic of Korea

Abstract

In this study, the effect of annealing and substrate conditions on the ferroelectricity of undoped hafnium oxide (HfO2) was analyzed. Hafnium oxide was deposited on various substrates such as platinum, titanium nitride, and silicon (Pt, TiN, Si) through RF magnetron sputtering. Annealing was performed in a nitrogen atmosphere at temperatures ranging from 400 to 600 °C, and the process lasted anywhere from 1 to 30 min. As a result, it was confirmed that the orthorhombic phase, the main cause of ferroelectricity, was dominant after a post-anneal at 600 °C for 30 min. Additionally, it was observed that interface mixing between hafnium oxide and the substrate may degrade ferroelectricity. Accordingly, the highest remanent polarization, measured at 14.24 μC/cm2, was observed with the Pt electrode. This finding was further corroborated by piezo force microscopy and endurance tests, with the results being significant compared to previously reported values. This analysis demonstrates that optimizing substrate and annealing conditions, rather than doping, can enhance the ferroelectricity of hafnium oxide, laying the foundation for the future development of ferroelectric-based transistors.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3