Nanoarchitectonics of Fe-Doped Ni3S2 Arrays on Ni Foam from MOF Precursors for Promoted Oxygen Evolution Reaction Activity

Author:

Zhang Jingchao1,Bu Yingping12,Li Zhuoyan1,Yang Ting1,Zhao Naihui1,Wu Guanghui1,Zhao Fujing1ORCID,Zhang Renchun1,Zhang Daojun1

Affiliation:

1. Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China

2. College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

Abstract

Oxygen evolution reaction (OER) is a critical half-reaction in electrochemical overall water splitting and metal–air battery fields; however, the exploitation of the high activity of non-noble metal electrocatalysts to promote the intrinsic slow kinetics of OER is a vital and urgent research topic. Herein, Fe-doped Ni3S2 arrays were derived from MOF precursors and directly grown on nickel foam via the traditional solvothermal way. The arrays integrated into nickel foam can be used as self-supported electrodes directly without any adhesive. Due to the synergistic effect of Fe and Ni elements in the Ni3S2 structure, the optimized Fe2.3%-Ni3S2/NF electrode delivers excellent OER activity in an alkaline medium. The optimized electrode only requires a small overpotential of 233 mV to reach the current density of 10 mA cm−2, and the catalytic activity of the electrode can surpass several related electrodes reported in the literature. In addition, the long-term stability of the Fe2.3%-Ni3S2/NF electrode showed no significant attenuation after 12 h of testing at a current density of 50 mA cm−2. The introduction of Fe ions could modulate the electrical conductivity and morphology of the Ni3S2 structure and thus provide a high electrochemically active area, fast reaction sites, and charge transfer rate for OER activity.

Funder

Key Scientific Research Project Plan of Colleges and Universities in Henan Province

Science and Technology Research Project of Henan Province

National Science Foundation of China

Program for Innovative Research Team of Science and Technology in the University of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3