Mechanism of Carrier Formation in P3HT-C60-PCBM Solar Cells

Author:

Tachikawa Hiroto1ORCID,Kawabata Hiroshi1,Abe Shigeaki2,Watanabe Ikuya2

Affiliation:

1. Department of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan

2. Department of Dental and Biomedical Materials Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8102, Japan

Abstract

Solar cells convert light energy directly into electricity using semiconductor materials. The ternary system, composed of poly(3-hexylthiophene) (P3HT), fullerene (C60), and phenyl-C61-butyric-acid-methyl-ester (PCBM), expressed as P3HT-C60-PCBM, is one of the most efficient organic solar cells. In the present study, the structures and electronic states of P3HT-C60-PCBM have been investigated by means of the density functional theory (DFT) method to shed light on the mechanism of charge separation in semiconductor materials. The thiophene hexamer was used as a model of P3HT. Five geometrical conformers were obtained as the C60-PCBM binary complexes. In the ternary system, P3HT wrapped around C60 in the stable structure of P3HT-C60-PCBM. The intermolecular distances for P3HT-(C60-PCBM) and (P3HT-C60)-PCBM were 3.255 and 2.885 Å, respectively. The binding energies of P3HT + (C60-PCBM) and (P3HT-C60) + PCBM were 27.2 and 19.1 kcal/mol, respectively. The charge transfer bands were found at the low-lying excited states of P3HT-C60-PCBM. These bands strongly correlated with the carrier separation and electron transfer in solar cells. The electronic states at the ground and excited states of P3HT-C60-PCBM were discussed on the basis of the calculated results.

Funder

JSPS KAKENHI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3