What Controls the Flushing Efficiency and Particle Transport Pathways in a Tropical Estuary? Cochin Estuary, Southwest Coast of India

Author:

John Sebin,Muraleedharan K.R.ORCID,Revichandran C.,Azeez S. Abdul,Seena G.,Cazenave Pierre W.

Abstract

Estuaries with poor flushing and longer residence time retain effluents and pollutants, ultimately resulting in eutrophication, a decline in biodiversity and, finally, deterioration of water quality. Cochin Estuary (CE), southwest coast of India, is under the threat of nutrient enrichment by the anthropogenic interventions and terrestrial inputs through land runoff. The present study used the FVCOM hydrodynamic model coupled with the Lagrangian particle module (passive) to estimate the residence time and to delineate site-specific transport pathways in the CE. The back and forth movements and residence time of particles was elucidated by using metrics such as path length, net displacement and tortuosity. Spatio-temporal patterns of the particle distribution in the CE showed a similar trend during monsoon and post-monsoon with an average residence time of 25 and 30 days, respectively. During the low river discharge period (pre-monsoon), flood-ebb velocities resulted in a minimum net transport of the water and longer residence time of 90 days compared to that of the high discharge period (monsoon). During the pre-monsoon, particle released at the southern upstream (station 15) traversed a path length of 350 km in 90 days before being flushed out through the Fortkochi inlet, where the axial distance was only 35 km. This indicates that the retention capacity of pollutants within the system is very high and can adversely affect the water quality of the ecosystem. However, path length (120 km) and residence time (7.5 days) of CE were considerably reduced during the high discharge period. Thus the reduced path length and the lower residence time can effectively transport the pollutants reaching the system, which will ultimately restore the healthy ecosystem. This is a pioneer attempt to estimate the flushing characteristics and residence time of the CE by integrating the hydrodynamics and Lagrangian particle tracking module of FVCOM. This information is vital for the sustainable management of sensitive ecosystems.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3