Abstract
The treatment of landfill leachate could be challenging for the biological wastewater treatment systems due to its high toxicity and the presence of poorly biodegradable contaminants. In this study, the bioaugmentation technology was successfully applied in sequencing batch reactors (SBRs) fed with the phenolic landfill leachate by inoculation of the activated sludge (AS) with two phenol-degrading Pseudomonas putida OR45a and Pseudomonas putida KB3 strains. According to the results, the SBRs bioaugmented with Pseudomonas strains withstood the increasing concentrations of the leachate. This resulted in the higher removal efficiency of the chemical oxygen demand (COD) of 79–86%, ammonia nitrogen of 87–88% and phenolic compounds of 85–96% as compared to 45%, 64%, and 50% for the noninoculated SBR. Simultaneously, the bioaugmentation of the AS allowed to maintain the high enzymatic activity of dehydrogenases, nonspecific esterases, and catalase in this ecosystem, which contributed to the higher functional capacity of indigenous microorganisms than in the noninoculated AS. Herein, the stress level experienced by the microorganisms in the SBRs fed with the leachate computed based on the cellular ATP measurements showed that the abundance of exogenous Pseudomonas strains in the bioreactors contributed to the reduction in effluent toxicity, which was reflected by a decrease in the stress biomass index to 32–45% as compared to the nonbioaugmented AS (76%).
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference60 articles.
1. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (Text with EEA Relevance),2008
2. Landfill leachate treatment: Review and opportunity
3. Suitability of Municipal Wastewater Treatment Plants for the Treatment of Landfill Leachate;Brennan,2017
4. A comparison of landfill leachates based on waste composition
5. Evaluation of the biodegradability and toxicity of landfill leachates after pretreatment using advanced oxidative processes
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献